A High-Performance MPI Implementation on a
Shared-Memory Vector Supercomputer”

William Gropp and Ewing Lusk
Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, 1L 60439

Abstract

In this article we recount the sequence of steps by which MPICH, a high-performance,
portable implementation of the Message-Passing Interface (MPI) standard, was ported
to the NEC SX-4, a high-performance parallel supercomputer. Each step in the sequence
raised issues that are important for shared-memory programming in general and shed
light on both MPICH and the SX-4. The result i1s a low-latency, very high bandwidth
implementation of MPI for the NEC SX-4. In the process, MPICH was also improved
in several general ways.

1 Introduction

MPI [3, 6] is a portable message-passing library specification. MPICH [4] is a portable MPI
implementation in the sense that it can be adapted relatively easily to a new machine, and
a high-performance implementation in the sense that MPICH enables such an adaptation
to take full advantage of high-performance hardware. The NEC SX-4 [7] is a parallel vector
supercomputer with shared memory. The presence of shared memory means that message
transfer will be done by memcpy, and the vector units enable memcpy to be very fast. Since
the SX-4 supports System V shared memory, MPICH could be ported immediately to the
SX-4 because it has already been ported to the System V shared-memory environment in
other contexts. However, realizing the potential peak performance of the SX-4 required
studying and eliminating several performance bottlenecks. Some of these were specific to
the SX-4, and some apply to other machines as well. This paper describes the process of
achieving high performance of MPICH on the SX-4 and the issues this process raised. In
particular, in the presence of high bandwidth, the cost of locking for shared memory access
becomes critical; but reducing the cost of locking introduces other concerns, such as the
precise behavior of the memory system, caching strategies, and instruction ordering in a
multiprocessor system.

This paper is organized around the sequence of versions of MPICH that we built for
the SX-4. For each one, we describe the issues raised, both for MPICH and for the SX-4,

*This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Computational and Technology Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

and how they were resolved. For each version, we report latency and bandwidth results on
the SX-4.! We note that we used a very newly-installed version of the system hardware
and software. Our performance results are valid for the DLR machine as configured in May
1996. Upgrades to both the hardware and software are expected. We hope that it is easy
to see from the results we present here how such upgrades will affect MPICH performance
on the SX-4.

2 Shared Memory, Semaphores, and Locks

Each Unix process has its own separate address space. The programming model targeted
by the MPI standard requires separate address spaces for the application’s MPI processes.
However, many Unix-based systems provide mechanisms by which some memory can be
shared among processes, and this memory can be used by the MPI implementation library,
even if it is not seen by the user application program. One of the most widely available
mechanisms is System V shared memory (identified by the presence of the shmat system
call). Others include the use of mmap to produce a shared-memory area, available on a
wide variety of Unix-based systems, and vendor-specific mechanisms such as SGI’s shared
arenas. The SX-4 uses System V shared memory for sharing memory among Unix processes,
although its primary parallel programming model is pthreads (see Section 9.2 for more on
this model).

In order to coordinate access to shared memory, a locking mechanism is required. System
V environments provide such a mechanism through System V semaphores, identified by the
presence of semop. Most modern CPUs also have hardware instructions from which locks can
be synthesized, such as a test-and-set instruction or conditional load and store instructions.
Locks can even be synthesized entirely in software [5]. Various vendors provide proprietary
locks of various kinds in their libraries. The SX-4 software environment provides System V
semaphores. The machine has a test-and-set instruction, but access to it is only through
assembler language.

3 MPICH Message-handling Protocols

To understand our results, one must have some familiarity with the structure of MPICH and
the message protocols it uses to obtain robust, high performance. Details of the MPICH
architecture can be found in [4]. The fundamental concept is that of the abstract device
interface. Almost all of MPICH is completely portable, with the crucial set of environment-
and vendor-dependent functions captured in a collection of implementations of the abstract
device interface routines. The basic abstract device implements point-to-point message
passing; collective operations can also be implemented by the abstract device. At the
simplest level, the abstract device provides routines to send information from one processor
to another. This information may be a complete MPI message, or information used by the
MPICH implementation to send a message.

'We gratefully acknowledge NEC for allowing us to use the SX systems at Houston and at the German
Aerospace Research Establishment (DLR) at Gottingen, where our experiments were carried out. We also
acknowledge Rolf Hempel of the NEC Computation and Communication Research Laboratories at Bonn,
Germany.

An MPI message consists of two parts: the data that makes up the messages that user
wishes to transmit and the envelope that contains information about the message, such as
its source, length, and tag.

MPICH has three different protocols for transferring messages. These are currently
selected based on the length of the message,? but they can be modified when MPICH is
configured for a given system.

short The message is short enough to be included with the envelope (default is less than
1 Kbyte)

eager The message is short enough to be sent immediately (without waiting for a posted
receive), with the assumption that it can be buffered on the receiving side. The
upper limit of the lengths that use this protocol is very system-dependent. The
default is 128K bytes; this is chosen to optimize performance over economy of memory
utilization.

rendezvous The message is long and will not be transferred until the receive is posted, in
order to eliminate the necessity of buffering.

In the MPICH abstract device, the envelope and a small amount of data are combined
in a control packet. Additional control packets are used to coordinate the transmittal of
data, for example, in the case where data is not delivered until requested. For example, in
one implementation of the rendezvous protocol, a control packet is used by the sender to
announce the availability of a message; the destination process sends another control packet
when it is ready to receive the message. The data is actually transferred in an additional
step (without a control packet).

Each of these protocols is implemented in a different way by the various devices. For
the shared-memory device (ch_shmem) on which our SX-4 implementation is based, each
process maintains a separate queue for receiving control packets from any process (thus
there are p separate queues if the size of MPI_COMM_WORLD is p). These queues are kept in
shared memory and are guarded by locks. Each queue has multiple writers (any process
sending to the process that owns the queue) but only a single reader (the owner of the
queue). Sending a control packet involves allocating shared memory for the packet, filling
in the information, and appending it to the end of the destination process’s queue. In the
general case, appending the control packet to the end of a shared queue requires a lock
to guarantee that only one process changes the queue at a time. The data for eager and
rendezvous messages are transferred by copying them into and out of the shared memory.

4 The Instantaneous Port of MPICH to the SX-4

Since MPICH had already been ported to the System V environment, and the building of
MPICH uses configure to identify the capabilities of the environment it is running in and
construct Makefiles accordingly, only two commands should have been needed for the first
port.

2The length may be taken relative to the amount of space being used to hold unreceived eager messages.

configure
make

In practice, this strategy almost succeeded. A few small problems (with NEC’s include files,
the default implementation of MPI_Address, and the need always to link with the Fortran
linker) were easily resolved. The resulting version, which used System V shared memory
and semaphores, passed the extensive test suite for a complete MPI implementation. We
tested its performance using mpptest, a sophisticated benchmarking tool provided in the
MPICH distribution. The results for the simple “ping-pong” test are shown in Figure 1.

Comm Perf for MPI (SX—4), queue/semop Comm Perf for MPI (SX—4), queue/semop
type = blocking
T I T I

t = blocki
1400 T T H\yp‘ew\o\c‘m\g\ L 800 T

1300 —

600
1200 — —

T
I

Rate MB/sec
IS
<}
3

time (us

900 — —
200

400 el b e o ! | ‘ |
500 1000 1500 2000 2500 1000000 2000000 3000000 4000000

Size (bytes) Size (bytes)

Figure 1: Performance of MPICH with System V shared memory and semaphores

If we consider the latency graph on the left side of Figure 1, two features stand out:

o The latency is high, starting with 750 microseconds and changing to over a millisecond.

e The transition from the short message protocol (message included in packet) to the
eager protocol (message short enough to be sent immediately but will not fit in a
single packet) at 1024 bytes is quite noticeable, since two locks are required instead
of one.

This experiment tells us that the cost of using System V semaphores on the SX-4 is too
high to permit low latency. On the other hand, bandwidth is quite promising in the sense
that it is still increasing at messages with lengths of 4 megabytes. The SX-4 has special
vector move instructions and provides access to the memory bandwidth to users through
the standard library version of memcpy. The latency cost of the locks is so high, however,
that it restricts the bandwidth even for large messages. Therefore we decided to focus on
alternative strategies for the use of locks.

5 Lock-free Packet Queues

We followed two approaches: reducing the number of times that we had to perform a lock
operation, and replacing the System V locks with less expensive ones. In this section we
discuss our experiences with the first approach. In Section 6 we discuss experiences with
the second one. Finally, in Section 7 we describe the combination of these two strategies,
which yields the best implementation.

We introduced into MPICH a lock-free mechanism for delivering control packets and
short messages (short enough to be included in the packet itself). The idea is borrowed
from MPICH’s T3D abstract device implementation [2], and generalizes to any system with
one-sided get/put operations, as well as to other shared-memory machines. The central idea
is to define in shared memory (System V shared memory on the SX-4) an array of packet
slots, one slot for each pair of processes that we expect to communicate. For example, on
a 32-processor SX-4, one might make this an array of length 32 x 32. Optimizations to
reduce the size of this array can be made, because in a scalable computation it is unlikely
that each process will communicate with each other process; however, we have not made
such optimizations yet.

When process ¢ wishes to send a packet to process j, it looks at the packet slot dedicated
to messages from ¢ to j. The slot contains a bit indicating whether it is occupied or not.
If the slot is unoccupied, process ¢ puts the packet (header, perhaps plus part or all of a
message) there and sets the bit. If the slot is occupied, process ¢ chooses one of a number of
back-off strategies, and tries again later (perhaps only a microsecond later, or even sooner).
Meanwhile, process j can check for an incoming packet by checking the bit. When the bit
is set, process j copies the packet out of the slot and clears the bit.

One way to view this is that we have switched from p multiple-writer/single reader
queues to p(p — 1) single-writer/single-reader slots. By using single writer queues, we avoid
the need for a lock. The cost is the need for each process to check p — 1 slots instead of a
single queue. This introduces a scalability issue that we discuss in Section 9.1, along with
some variations of this approach.

This algorithm depends on a model of memory and instruction execution (see [1] for an
excellent tutorial) that cannot be relied on in today’s high-performance machines, which
depend heavily on the use of cache and the ability to modify the order of instruction
execution (including, perhaps especially, memory reads and writes) for greater performance.
Two separate issues are involved:

e Some parallel machines, including the SX-4, are not cache coherent. That is, data
written to a memory location by one process does not necessarily invalidate the cache
of another processor that may have cached that location. For example, a process may
be spinning on a memory location, have it cached, and not see a change made in the
value of that location by another process. This is the cache coherence problem.

¢ Many machines, including the SX-4, reorder the order of instruction execution when
there is a perceived benefit without a change in semantics. In particular, the order
of writes to separate locations might be altered from the order specified in the source
code. Thus the assumption that one can write data to one location and then set a
bit in another location to indicate that the data is ready to be read is invalid. The

CPU may be allowed to write the bit before writing the data, even if the compiler
has been instructed not to reorder instructions at compile time. This is the sequential
consistency problem.

Both problems can be overcome with assembler-language instructions that force the
appropriate type of synchronization. NEC supplied us with C-callable functions to do this.
Note that these routines are not coded in assembler language for speed but in order to ensure
correctness. There is no mechanism in C for dealing with either the cache coherence or the
sequential consistency problem; the register declaration of C addresses the issue of register
consistency. We solve the cache coherency problem by using vector move instructions on
the SX-4, which bypass the cache. We solve the sequential consistency problem by using the
NEC routines for the critical operations of setting and testing the bit indicating whether a
packet slot is full (ready to be read) or not.

The use of these instructions is straightforward. In Figures 2 and 3 we list an abbrevi-
ated version of the critical code for manipulating the lock-free queues. Assume that slots
is the two-dimensional array of packet slots, one for each ordered pair of processes.

int ReadControl(pkt, size, from, is_blocking)
MPID_PKT_T **pkt;

int size, *from;
int is_blocking;
{

while (1) {

for (i=0; i<num_processes; i++) {
if (PKT_READY_IS_SET(slots[il[myid].ready)) {

*from = i;
*pkt = &slots[i][myid];
return O;
+
+
if ('is_blocking)
return 1;
else
/* execute backoff strategy */
+
return O;

Figure 2: Code for reading a control packet

Macros are used to encapsulate the instructions needed for the critical memory oper-
ations. In Figure 2, the PKT_READY_IS_SET macro is used to make sure that this routine
reads the value of the bit as set by another process, not its own copy in cache.

In Figure 3, the MPID_PKT _READY_IS_SET macro is used again to avoid looking at a (stale)

int SendControl(pkt, size, dest)
MPID_PKT_T *pkt;
int size, dest;
{
if (MPID_PKT_READY_IS_SET(slots[dest] [myid].ready)) {
while (MPID_PKT_READY_IS_SET(slots[dest][myid].ready)) {
/* execute backoff strategy */
+
+
pkt->ready = O;
PKT_COPYIN(&slots[dest][MPID_myid], pkt, size);
PKT_READY_SET(slots[dest] [myid] .ready);
return O;

Figure 3: Code for sending a control packet

copy of the ready bit in cache. In addition, the PKT_COPYIN and PKT_READY_SET are used
enforce sequential consistency, i.e., to make sure that the packet data is indeed written
before the bit indicating that it is ready is set.

In any particular version of MPICH, the macros are defined to be the instructions needed
to perform the operations (setting and testing the “ready” bit and copying a packet into a
slot) in a correct way. On the SX-4, these call the assembler language routines given us by
NEC, which use special synchronization instructions to provide sequential consistency for
the memory operations. On a PA-RISC machine, we would use a sync instruction to flush
memory writes, and might depend on cache-coherent hardware.

On the SX-4 there is no instruction to flush a single cache line, only to flush the entire
cache. Therefore we bypass the cache altogether with the vector move instructions for
copying a packet. This ensures that the data will be visible to all processors when the
instruction completes on one processor.

The need for these routines also illustrates why locks are often so expensive. A general
purpose lock must ensure that the memory satisfies the user’s expectations of sequential
consistency and cache coherence; this may involve a significant overhead beyond the cost
of the lock operation itself. For example, on the SX-4, because of the cost of flushing the
cache, a general lock operation will always be relatively expensive.

Performance of the resulting MPICH version is shown in Figure 4. Eliminating locks
for short messages reduced the latency to around 40 microseconds. On the other hand, we
still need one lock for medium-length messages, and this is still expensive (the lock is used
in the allocation of shared memory for the message data; there is a single shared pool of
shared memory in the ch_shmem implementation). One can also notice the effect of using
a large amount of memory for the lock-free queues (32 x 32 x 1024 bytes). Since only a
limited amount of System V shared memory can be defined on the SX-4 (between 8 and
16 megabytes on the system we used), very long messages have to be transferred through

Comm Perf for MPI (SX—4), lock—free/semop Comm Perf for MPI (8X—4), lock—free/semop
type = blocking type = blocking
800 T 1000 | ‘ ‘ ‘

800 — ra |
600 — —

600 — —

400 — —

time (us)
Rate MB/sec
T

400 — —

200 — —
200 — —

e e e e b e e e L | | I |
0 500 1000 1500 2000 2500 o 1000000 2000000 3000000 4000000

Size (bytes) Size (bytes)

Figure 4: Lock-free Queues plus System V Semaphores

shared memory in multiple segments. The length at which we switch from one segment to
two is indicated by the dip in bandwidth at about 3 MB.

6 Replacing System V Semaphores with Fast Locks

The SX-4 instruction set includes a test-and-set instruction, from which a lock can be
constructed that does not require a system call. In addition, use of this instruction auto-
matically synchronizes the processor with its memory, so that one need not worry about
sequential consistency issues (cache consistency is still an issue, but by using vector in-
structions to read and write data, we avoid the cache entirely). Therefore the simplest
way to improve performance over the “instantaneous port” version is to replace the System
V semaphores with such locks. On request, NEC provided us with C-callable assembler-
language functions that implement locks using the test-and-set instruction. Replacing the
System V semaphores with these locks was not completely straightforward, since MPICH
bound together the System V locking scheme (which we wished to replace) with the System
V shared-memory scheme (which we wished to keep). A small amount of work on MPICH’s
abstract device for shared memory (ch_shmem), however, made this possible, and MPICH
is now the better for it. The results of replacing the System V locks with the test-and-
set-based locks is shown in Figure 5. Latency for short messages is about 80 microseconds,
and it jumps to about 120 microseconds when the second lock is required. The much lower
locking cost improves the bandwidth, which is reaching 1.2 GB/second for large messages.

Comm Perf for MPI (SX—4), queue/asm Comm Perf for MPI (SX—4), queue/asm
type = blocking type = blocking
160 ——T 1400 | ‘ ‘ ‘

— 1200

I
Rate MB/sec
—
o
s}
s}

time (us)

@
=]
S}

— 600

e e L 200

L I
60 500 1000 1500 2000 2500 1000000 2000000 3000000 4000000
Size (bytes) Size (bytes)

Figure 5: Using assembler-language locks

7 Putting It All Together: Lock-free Packet Queues and
Fast Locks

The assembler-language locks turned out to be significantly slower than we expected, so
the lock-free mechanism for packet delivery is preferred. In Figure 6 we see the result of
combining the System V shared memory, lock-free queues, and assembler-language locks
where locks are required. Latency is now a respectable 40 microseconds (dipping to 37
microseconds for 0-length messages, and jumps to only 90 microseconds for messages of
length 1 kilobyte. Bandwidth is still 1.2 GB/sec., limited only by the speed of memcpy (see
Section 8) and the amount of shared memory available. This is now the current version of
MPICH for the SX-4. It passed all of the acceptance tests that we ran, which included all
of the extensive MPICH tests except the collective tests, because they assume the existence
of a greater number of processors than we had available.

8 Can We Do Better?

All of the above modifications to MPICH were made during a five-day period while we
were visiting the NEC Computation and Communication Research Laboratories at Bonn,
Germany. MPICH was proved to be easy to port to this new environment and easy to
tune for high performance. An interesting question is, how much of the potential message-
passing performance of the SX-4 did we achieve in this short time? If much more effort
were to be invested in an MPI implementation for the SX-4, could latency and bandwidth
be improved?

Our answer is, Maybe, but not much. First, let us consider the bandwidth. Using

Comm Perf for MPI (SX—4), lock—free/asm Comm Perf for MPI (SX—4), lock—free/asm
type = blocking type = blocking
100 ——T 1400 | ‘ ‘ ‘

90 —

1200

80 —

,_.
o
=]
S

70 —

time (us)
T
|
Rate MB/sec

60 — —
800

50 — —

600

30 el b e 200 ! | ‘ |
500 1000 1500 2000 2500 1000000 2000000 3000000 4000000

Size (bytes) Size (bytes)

Figure 6: Lock-free queues plus assembler-language locks

separate Unix processes and shared memory, a message must be transferred by two memcpy
operations, first into and then out of the shared memory. We measured the performance
of memcpy on the SX-4 using copytest, a program distributed with MPICH that we use to
measure memory bandwidth as delivered by memcpy. In this case it is just copying memory
within a single process.

As we measured it on the machine we were using (at DLR), memcpy delivers about
2.5 GB/second for large moves. Since message passing between processes requires two
copies, our 1.2 GB/second bandwidths are quite close to peak. Note that other machine
configurations might produce greater bandwidths; we report here just on the experiments
we did on the DLR machine. The point is that MPICH does not have much measurable
overhead (beyond the cost of memcpy). Future hardware upgrades to this machine can be
expected to improve the bandwidth of memcpy and therefore of MPICH.

Studying latencies caused us to look at the assembler code generated by the compiler for
the critical routines that implement the lock-free queues. We did make some changes to the
C code that saved a few microseconds, and these optimizations are reflected in the results
we have given. It would also be possible to remove a few more microseconds by removing
all debugging capabilities. No doubt careful study would reveal a few more corners to be
trimmed, and of course the entire calling sequence down from MPI Send could be recoded
in assembler, but our examination of the generated code leads us to believe that even
major changes, seriously impacting portability, would not take the latency much below 30
microseconds. The issues of cache coherency and sequential consistency in this section of
the code (either with or without locks) ensure that in this case the cycle time of the machine
is not a good guide to the time needed to execute this code.

10

9 Further Work

Although the existing implementation of MPICH is complete and efficient as it stands,
further work could be done in a number of areas. In this section we describe some directions
that the MPI implementation on the SX-4 might take.

9.1 Refining the Lock-Free Queues

The major addition to MPICH that this work created was the lock-free queue mechanism.
While what we have done so far is adequate for the benchmarks we ran and demonstrated
the utility of the concept, we can envision two related refinements useful for application
programs.

In the current data structures, each ordered pair of processes has only one packet slot.
If a process is sending multiple messages in rapid succession to another process, it may need
to back off repeatedly if the receiving process is not keeping up by posting the appropriate
receives. A longer queue for each ordered pair of processes can be created by having an
array of packet slots that are used cyclically. Then a sending process need back off only if
all the slots for the pair are in use.

Lengthening the queues uses up shared memory, however, which could be a limited re-
source when the potential number of processes as large, and we have seen (in Figures 4
and 6) that this has a (small) negative effect on the bandwidth. In addition, latency is
adversely affected when the number of queues is large, since a receiving process must check
all of its queues for incoming messages (the for loop in Figure 2). In a truly scalable
computation, it will not be the case that every process will communicate with every other
process. Therefore, it will have little impact on performance to limit the lock-free queue
data structures so that each process has only a relatively small number of queues for in-
coming messages from the processes that it communicates the most, while messages from
other processes are handled by a single queue (per receiving process, as in the ch_shmem
implementation) guarded by a lock. The processes that “deserve” lock-free queues can be
identified dynamically as the communication pattern of the application is recognized.

9.2 Replacing Processes by Threads

The NEC SX-4 system software included a subset of the POSIX pthreads library. The
primary (far from the only) difference between expressing parallelism with multiple threads
in a single process rather than multiple processes is the difference in the memory model. In
a thread model all static variables are implicitly shared, although it is possible to allocate
thread-local memory and access it through special calls in the pthreads library. This is
in contrast to the Unix process model, in which address spaces are implicitly separate,
although mechanisms (such as mmap or shmat) often exist for allocating memory visible to
multiple processes. This difference in the memory model typically makes it difficult to port
an application program from one model to the other. Hence in this work so far we have
considered only the process model as a foundation for MPI implementation.

On the SX-4 it is possible to declare at compile time that static variables are to be

11

kept in thread-local memory, although accessed in the normal way (by load and store
instructions. It is also possible to declare some variables to be shared among threads, using
the _pthread shared begin— pthread shared_end compiler pragma. These two features
make it possible to replace processes by threads on the SX-4.

Using threads offers two advantages. First, since the process is the unit of scheduling
in the operating system, all application threads will be swapped in at the same time. This
accomplishes a form of “gang scheduling,” which is not supported for groups of processes
on the SX-4. Second, since threads can directly access the address space of other processes,
the message delivery mechanism we have used with processes, in which messages are copied
into shared memory by the sending process and out of it by the receiving process, can be
replaced by a single-copy mechanism. The use of a single memcpy from one thread-local
address to another to complete a receive operation would double the bandwidth of the MPI
implementation.

We emphasize that parallel threads (instead of parallel processes) are not visible to
the application program, only to the MPI implementation. Therefore message-passing pro-
grams, which typically assume that static variables are not shared, should be portable to this
scheme. Even so, this is not necessarily a desirable strategy. The bandwidth increase is un-
likely to benefit most applications, since the 1.2 GB/second bandwidth of the process model
is already so high. It is unlikely that the latency will be affected, since pthread locks can-
not be much more efficient than the combination of lock-free queues and test-and-set locks
that we are already using (and in fact may be slower if they force cache flushes). Finally,
since the interaction between threads and system calls has not been POSIX-standardized as
much as the pthreads interface itself, user programs may not prove as portable as one might
hope. (For example, if one thread reads a file, it might block all other threads because
the process is blocked, whereas this situation would not occur with separate processes.)
Whether these potential drawbacks are outweighed by the benefits of maximum-bandwidth
and gang scheduling remains to be determined by implementations of, and experience with,
applications.

9.3 Using Lock-Free Queues on Other Architectures

The lock-free queues described in Section 7 were invented to facilitate lock avoidance, not
only on shared-memory machines, but also on machines like the Cray T3D and the NEC
Cenju-3. These machines, while not supporting true shared memory, do provide the one-
sided remote memory access functions put and get. Using these functions, one process can
directly access the address space of another. Therefore, the lock-free queue data structures
can be distributed among the private address spaces of the processes. For example, the
packet slot (or array of slots) by which process 7 sends messages to process j can be stored
in the address space of process j and accessed via a put operation by process i. The one
case in which process ¢ would want to do a get would be to read the bit that indicates
that a slot is empty. For efficiency reasons, this bit should be kept in the address space
of process ¢, which can read it locally, and it should be cleared by process 7 with a put
operation when the slot is emptied. One additional change is to keep separate locations for
“slot is full” and “slot is empty” to allow purely local memory reads (as opposed to remote
memory reads) to detect when a slot contains a message (when checked by a receiver) or
when a slot is free to accept a new message (when checked by a sender).

12

An implementation based on this design has been done for the NEC Cenju-3 by Hubert
Ritzdorf of the NEC Computation and Communication Research Laboratories.

10 Summary

We have described the results of porting MPICH to the NEC-5X-4. The modular structure
of MPICH enabled a number of distinct implementation strategies to be explored in a short
time, particularly since NEC was able to quickly supply special SX-4-specific functions that
we needed. The results are summarized in Figure 7. (On the left half of the left side
of Figure 7, the two “lock-free” curves coincide, since the code is the exactly same for
the short protocol in those two cases.) The “default” version, using standard System V

Comm Perf for MPI (SX—4) Comm Perf for MPI (SX—4)
type = blocking type = blocking
T ‘ :

queue/semop ~ = lock—free/asm

queue/asm

1000 — 1000 - —

lock—free/semop

o
- ¢
3)

° r 7 = r 7
g .

= r lock—free/semap B g r B

500 — — 500 — —

queue/semop
= queue/asm - = -
lock—free/asm
ol v v v T v L e L e L 0 | | I |
500 1000 1500 2000 2500 1 2 3 4
Size (bytes) Size (MBytes)

Figure 7: Superimposed Performance Graphs

shared memory and semaphores, while it did provide a complete implementation of MPI on
the SX-4 with no additional work, did not have acceptable performance. The semaphores
were such expensive system calls that they not only made the latency unacceptable but
also significantly impacted the bandwidth (see the lower two curves in the right half of
Figure 7). We note that a future release of the operating system is expected to have more
efficient System V semaphores. Switching to assembler-level locks pushed the bandwidth
close to the maximum available (constrained by the use of two memcpy’s). To reduce the
latency further, we developed a lock-free queuing mechanism for packets, producing the
lowest curve in the left half of Figure 7. The result is a low-latency (38 microseconds),
high-bandwidth (1.2 GB/second) complete implementation of MPI on the NEC SX-4.

There were a number of lessons learned that apply to any parallel program. The strat-
egy of replacing general locks with special lock-free data structures points out a way to
significantly reduce the cost of coordinating access to shared memory. Of particular inter-
est was the need for assembly language to obtain correct behavior of the memory system;

13

this suggests the need for language features, much like the register and volatile of C,
to express the memory access relationships.

MPICH, the portable MPI implementation that served as our starting point, gained
two general, permanent improvements. First, the lock-free queuing mechanism was en-
capsulated in a new MPICH “device” (ch_lfshmem), which can be implemented on other
shared-memory and pseudo-shared-memory machines. Second, the reorganization of the ex-
isting ch_shmem device, necessitated by our desire to use the assembler-language locks with
System V shared memory, will allow greater flexibility in configuring for shared-memory
machines in the future.

References

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A
tutorial. Technical Report 9512, Rice University ECE, September 1995. (also DEC
Western Research Laboratory Research Report 95/7).

[2] Ron Brightwell and Anthony Skjellum. MPICH on the T3D: A case study of high
performance message passing. (preprint), 1996.

[3] Message Passing Interface Forum. Document for a standard message-passing interface.
Technical Report Technical Report No. CS-93-214 (revised), University of Tennessee,
April 1994. Available on netlib.

[4] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance,
portable implementation of the MPI message-passing interface standard. Parallel Com-
puting, 22:789-828, 1996.

[5] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems, 5(1):1-11, February 1987. Also SRC Research Report 7, November 30, 1985.

[6] Message Passing Interface Forum. MPI: A message-passing interface standard. Inter-
national Journal of Supercomputer Applications, 8(3/4):165-414, 1994.

[7] N.Nishi, S. Habata, M. Inoue, H. Matsumoto, and T. Kondo. SX-4 architecture for scal-
able parallel vector processing. In Proceedings of the International Symposium on Par-
allel and Distributed Supercomputing, pages 45-50, September 1995. (Fukuoka, Japan).

14

